Ca2+ oscillations at fertilization in mammals are regulated by the formation of pronuclei.

نویسندگان

  • Petros Marangos
  • Greg FitzHarris
  • John Carroll
چکیده

In mammals, the sperm triggers a series of cytosolic Ca(2+) oscillations that continue for approximately 4 hours, stopping close to the time of pronucleus formation. Ca(2+) transients are also seen in fertilized embryos during the first mitotic division. The mechanism that controls this pattern of sperm-induced Ca(2+) signalling is not known. Previous studies suggest two possible mechanisms: first, regulation of Ca(2+) oscillations by M-phase kinases; and second, regulation by the presence or absence of an intact nucleus. We describe experiments in mouse oocytes that differentiate between these mechanisms. We find that Ca(2+) oscillations continue after Cdk1-cyclin B1 activity falls at the time of polar body extrusion and after MAP kinase has been inhibited with UO126. This suggests that M-phase kinases are not necessary for continued Ca(2+) oscillations. A role for pronucleus formation in regulating Ca(2+) signalling is demonstrated in experiments where pronucleus formation is inhibited by microinjection of a lectin, WGA, without affecting the normal inactivation of the M-phase kinases. In oocytes with no pronuclei but with low M-phase kinase activity, sperm-induced Ca(2+) oscillations persist for nearly 10 hours. Furthermore, a dominant negative importin beta that inhibits nuclear transport, also prevents pronucleus formation and causes Ca(2+) oscillations that continue for nearly 12 hours. During mitosis, fluorescent tracers that mark nuclear envelope breakdown and the subsequent reformation of nuclei in the newly formed two-cell embryo establish that Ca(2+) oscillations are generated only in the absence of a patent nuclear membrane. We conclude by suggesting a model where nuclear sequestration and release of a Ca(2+)-releasing activity contributes to the temporal organization of Ca(2+) transients in meiosis and mitosis in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCzeta.

During the first cell cycle Ca2+ oscillations are regulated in a cell cycle-dependent manner, such that the oscillations are unique to M phase. How the Ca2+ oscillations are regulated with such cell cycle stage-dependency is unknown, despite their importance for egg activation and embryo development. We recently identified a novel, sperm-specific phospholipase C (PLCzeta; PLCzeta) that triggers...

متن کامل

Repetitive sperm-induced Ca2+ transients in mouse oocytes are cell cycle dependent.

Mature mouse oocytes are arrested at metaphase of the second meiotic division. Completion of meiosis and a block to polyspermy is caused by a series of repetitive Ca2+ transients triggered by the sperm at fertilization. These Ca2+ transients have been widely reported to last for a number of hours but when, or why, they cease is not known. Here we show that Ca2+ transients cease during entry int...

متن کامل

The dynamics of MAPK inactivation at fertilization in mouse eggs

Egg activation at fertilization in mammals is initiated by prolonged Ca(2+) oscillations that trigger the completion of meiosis and formation of pronuclei. A fall in mitogen-activated protein kinase (MAPK) activity is essential for pronuclear formation, but the precise timing and mechanism of decline are unknown. Here, we have measured the dynamics of MAPK pathway inactivation during fertilizat...

متن کامل

Phosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway.

A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effective...

متن کامل

The dynamics of plasma membrane PtdIns(4,5)P(2) at fertilization of mouse eggs.

A series of intracellular Ca2+ oscillations are responsible for triggering egg activation and cortical granule exocytosis at fertilization in mammals. These Ca2+ oscillations are generated by an increase in inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], which results from the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)]. Using confocal imaging to simultaneously monitor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 7  شماره 

صفحات  -

تاریخ انتشار 2003